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ABSTRACT 

The aim of this research was to compute the number of microstates for  
2p configuration 6n   and 

2x  , for 
2d configuration 10n   and 2x   and 

2f  configuration 14n   and 2x   using 

Euclidean vectors and the math function factorial as well as to describe in detail the microstates for 
2p  

configuration 6n   and 2x  . The following results were obtained: for  configuration  and 

,  microstates; for  configuration  and ,  microstates; for  

configuration  and ,  microstates. It was established that the 15 microstates of the 

 configuration. It was found that the 15 microstates of the p
2
 electron configuration belonged to three 

terms as followed: 5 microstates corresponding to the 
1
D term; 9 microstates to the 

3
Р term and 1 microstate 

to the 
1
S term.  

 

Key words: vector, factorial, microstate, p
2 
electron configuration 

 

INTRODUCTION 

Linear algebra and analytical geometry theory 

and methods are increasingly applied in 

chemistry. The states of multi-electron atoms 

or ions in chemistry are described and 

classified by two schemes (Russell-Saunders 

(L-S) and j-j coupling schemes). Both use 

vectors and factorials. 
 

1. Vectors  

Definitions 

 A vector is a geometric object that has both 

magnitude (length) and direction. 

 The tail of the vector is the end opposite the 

arrow. It represents where the vector is 

moving from. 

 The head of the vector is the end with the 

arrow. It represents where the vector is 

moving to. 

 The zero vector is denoted o . It has zero 

length and all the properties of zero. 

 Two vectors are equal is they have both the 

same magnitude and the same direction. 

_____________________________ 
*Correspondence to: M. Ivanova, Department of 

Informatics and Mathematics, Trakia University, 

Stara Zagora, 6000, Bulgaria; E-mail: 

mirkaiv@yahoo.com 

 

 Two vectors are parallel if they have the 

same  or    or opposite     

directions. That is, if the angles of the 

vectors are the same or 180⁰ different. 

 Two vectors are perpendicular if the 

difference of the angles of the vectors is 90⁰ 

or 270⁰ (1-4). 
 

Magnitude of a Vector  

The magnitude of a vector AB  is the distance 

between the initial point 1 1( , )A x y  and the end 

point 2 2( , )B x y . In symbols the magnitude of 

AB  is written as AB . If the coordinates of 

the initial point and the end point of a vector 

are given, the distance formula can be used to 

find its magnitude: 

2 2

2 1 2 1( ) ( )v AB x x y y         

(Figure 1). 

 

Let as remark, that AB BA . The directions 

of the two vectors are opposite, but their 

magnitudes are the same (1-4). 

 

2p 6n 

2x  15N  2d 10n  2x  45N  2f

14n  2x  91N 
2p

http://www.uni-sz.bg/
http://hotmath.com/hotmath_help/topics/distance-formula.html
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Figure 1. Magnitude of a vector. 
 

Direction of a Vector  

The direction of a vector is the measure of the 

angle it makes with a horizontal line. One of 

the following formulas can be used to find the 

direction of a vector:  

tan
y

x
  , 

where x is the horizontal change and y is the 

vertical change or 

2 1

2 1

tan
y y

x x






, 

where 1 1( , )x y  is the initial point and 2 2( , )x y  

is the terminal point (1-4). 
 

Operations with Vectors   

It is possible to operate with vectors in some of 

the same ways we operate with numbers. In 

particular: 
 

Adding and Subtracting Vectors 

To add or subtract two vectors, add or subtract 

the corresponding components. 

 Let 1 2,u u u  and 1 2,v v v  be two 

vectors. Then, the sum of u  and v  is the 

vector 

1 2 1 2 1 1 2 2, , ,u v u u v v u v u v      . 

The difference of u  and v  is 

1 1 2 2( ) ,u-v u v u v u v      . 

 

The sum of two or more vectors is called the 

resultant. The resultant of two vectors can be 

found using either the parallelogram 

method or the triangle method. 
 

Parallelogram Method: 

Draw the vectors so that their initial points 

coincide. Then draw lines to form a complete 

parallelogram. The diagonal from the initial 

point to the opposite vertex of the 

parallelogram is the resultant. 
 

Vector Addition: 

1. Place both vectors u   and v  at the 

same initial point. 

2. Complete the parallelogram. The 

resultant vector u v  is the diagonal 

of the parallelogram (Figure 2). 

 
Figure 2. Vector Addition 

 

Vector Subtraction: 
3. Complete the parallelogram.  

4. Draw the diagonals of the 

parallelogram from the initial point 

 (Figure 3). 

 
Figure 3. Vector Subtraction 

 

Triangle Method: 

Draw the vectors one after another, placing the 

initial point of each successive vector at the 

terminal point of the previous vector. Then 

draw the resultant from the initial point of the 

first vector to the terminal point of the last 

vector. This method is also called the head-to-

tail method (Figures 4, 5). 

 
Figure 4. Vector Addition. 

 
Figure 5. Vector Subtraction. 

 

http://hotmath.com/hotmath_help/topics/horizontal-vertical-lines.html
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Vector Algebra 

u v v u    ( )u u   o   a.( ) (a. ) (a. )u v u v    

( ) ( )u v w u w v      0.u  o     (a b). (a. ) (b. )u u u    

u u o  1.u u  (ab). a.(b. ) b.(a. )u u u    

 

Scalar Multiplication 

Scalar multiplication changes the magnitude of 

a vector, but not the direction. In general, 

1 2,u u u                           1 2. . , .uk k u k u  

 

2. Factorial  

In mathematics, the factorial of a non-negative 

integer n , denoted by !n , is the product of all 

positive integers less than or equal to n , e.t.

! 1.2 ( 2).( 1).n n n n   . In a particular 

way 0! 1! 1   (1-4). 

The aim of this research was to calculate the 

number of microstates for  
2p  configuration 

6n   and 2x  , for 
2d  configuration 

10n   and 2x   and 
2f  configuration 

14n   and 2x   using Euclidean vectors and 

the math function factorial as well as to describe 

in detail the microstates for 
2p  configuration 

6n   and 2x  .  
 

МATERIAL AND METHODS 

It is acknowledged that the movement of an 

electron in an atom could be represented by the 

orbital angular momentum. Similarly, the 

intrinsic motion of the electron is given by the  
 

 

 

 

spin angular momentum. Both angular 

momenta should be presented by vectors which 

have length and direction. Vectors will be 

identified by letters, their projections with m  

(for a single electron) or M  (for more than 1 

electron), and lengths will be represented by 

m  and M , respectively. For an electron with 

quantum numbers l and s, and orbital and spin 

angular momenta l  and s , the total angular 

momentum describing both motions is a sum 

of vectors: j l s   (5-10). Both vectors 

process (rotation of an vector around an axis 

with only vectors’ initial point lying on the 

axis; the vector and the axis are under a 

specific angle). Due to this motion, both 

vectors described a cone each. The addition of 

l  and s  could not be random. The angle 

between them remains constant in the course 

of processing. This results from the strict 

spatial orientation of both vectors. They could 

be oriented in a way such as their vector sum 

has strictly defined values of j  projections. 

Also, the differences between these projections 

(h) should be integers (11-19). The above 

mentioned is illustrated on Figure 6 for an 

electron on р-АО. 

    

1 3
1, ,

2 2
l s j     

1 1
1, ,

2 2
l s j     . 

Figure 6. Addition of vectors of orbital and spin angular momenta for 1l   and 1 2s  . Both circles 

represent the space quantization of the total angular momentum  j . The lengths of vectors are shown below the 

circles. 
 

 

 



IVANOVA M., et al. 

                                                         Trakia Journal of Sciences, Vol. 14, № 3, 2016                                             225 

 

 

Figure 7 depicts the addition of  L  and S  for 

2 electrons on р-АО. 

 

    

Figure 7. Addition of vectors of  orbital angular 

momentum l  and spin angular momentum s  for 

1l   and 1s  .  

 

The total angular momentum j  or J  for one 

or more electrons, respectively is quantized in 

space in the same way, as shown on both 

figures. 
 

Russell-Saunders coupling scheme. LS 

scheme 

In the Russell-Saunders scheme, the spin and 

orbital angular momenta are always summed 

independently:   
1 2

1

,
N

N i

i

L l l l l


       

1 2

1

N

N i

i

S s s s s


     .     

 

Then the resulting two vectors  L  and S  are 

combined to obtain the total angular 

momentum :J  J L S  . 
 

j-j coupling scheme 

The combination of angular momenta of a multi-

electron atom according to the j-j coupling 

scheme is done by combining each individual 

orbital to respective spin momentum i i ij l s   

and thereafter, the total angular momentum is 

obtained as the sum of individual total angular 

momenta:     
1 2

1

N

N i

i

J j j j j


       

 

This order of combining is derived from the 

nature of the j-j scheme – each electron 

determines its own momentum, and then 

follow the combination of total individual 

angular momenta of all electrons. 
 

The spin multiplicity is denoted with 2S + 

1. It is added as a superscript to the left of 

the letter expressing the sum of orbital 

momenta (electron state). For example, the 

electron state derived from the electronic 

configuration 1s
1  

is: 
21 2 0 2 1 2s l s S    . 

The symbol 
2
S (read as doublet es) is an 

electron term derived from the electronic 

configuration 1 s
1 

and including two 

microstates: 

m 1 2 m 0;

m 1 2 m 0.

s l

s l

 

  
  

 

The six microstates of the electronic 

configuration 2р
1 
аre:

 

 

m 1 2 m 1,0, 1;

m 1 2 m 1,0, 1.

s l

s l

   

   
  

 

They could be grouped into:  
21 2 1 2 1 2 term. .s l s P   

 

The symbol 
2
P (read as doublet pe), and 

2
S 

(read as doublet es) are called electron terms. 

Therefore, electron terms are a group of 

microstates (or combinations between them) 

with the same energy. 
 

The Russell Saunders scheme could be 

illustrated with several examples: 

Closed shell  — the general rule for this shell 

type that it always has S = 0 and L = 0 or term 
1
S. 

Open shell — only one of atomic orbitals 

making up a given electronic configuration 

without the maximum number of electrons is 

enough to have an open shell.. 
 

The total number of microstates for any 

configuration can be counted using by 

following expression (20). 
 

Number of ways of filling electrons N: 

 

  
2 2 1 !

! 2 2 1 ! !

l
N

x l x




 
 or 

 
!

! ! !

n

x n x
  

n = 2(2l+1) or double of the total number of 

orbital’s (For s-AO = 2, p-AO = 6, d-AO = 10, 

f-AO = 14)  
 

x = Total number of electrons in sub shell.  
 

RESULTS AND DISCUSSION 

So, for 
2p  configuration 6n   and 2x    

 
6!

,
2! 6! 2!

N 


 
6.5.4.3.2.1

,
4.3.2.1.2.1

N   

15N   Microstates. 
 

For 
2d  configuration 10n   and 2x    

 
10!

,
2! 10! 2!

N 


10.9.8.7.6.5.4.3.2.1
,

8.7.6.5.4.3.2.1.2.1
N      

45N   Microstates. 

 



IVANOVA M., et al. 

226                                                    Trakia Journal of Sciences, Vol. 14, № 3, 2016 

 

For 
2f  configuration 14n   and 2x    

 
14!

,
2! 14! 2!

N 


 

14.13.12.11.10.9.8.7.6.5.4.3.2.1
,

12.11.10.9.8.7.6.5.4.3.2.1.2.1
N   

91N   Microstates. 
 

On Figure 8 and Table 1 we present 15 

microstates obtained for р
2
 configuration 

6n   and 2x  . 

In Table 1 ML and MS denote the 

projections of respective L  and S vectors. 

The content of the table becomes clear from 

Fig. 8 – the numbers 1, 0, -1 are the m1-

projections of the orbital angular momenta 

of the first and second electron, the signs (+) 

and (-), placed over ml indicate the 

ms-projections of the spin angular 

momentum. 

 
                                                  Table 1.  Мicrostates of the electronic configuration p

2
 

MS 

ML 1 0 -1 

2  1,1
  
 
 

  

1 1,0
  
 
 

 1,0 , 1,0
      
   
   

 1,0
  
 
 

 

0 1, 1
  
 

 
 1, 1 , 0,0 , 1, 1

          
      

     
 1, 1

  
 

 
 

-1 0, 1
  
 

 
 0, 1 , 0, 1

      
    

   
 0, 1

  
 

 
 

-2  1, 1
  
  
 

  

For instance, for 
1 2 1

m 1, m 0, m 1 2l l s    

and 
2

1 2sm  , the microstate is 1,0 ,
  
 
 

 

whose wave function is 1 m 1 m 2 0l l
s s   

 

 

1lm     0 1  -1 0 1  -1 0 1 

                  

  (1,0)
 

    
(1, 1)
 

  
   

(0, 1)
 

  
 

           

                       

 (1,0)
 

    
(1, 1)
 

  
   

(0, 1)
 

  
 

           

                    

 (1,0)
 

    
(1, 1)
 

  
   

(0, 1)
 

  
 

           

                    

 (1,0)
 

    
(1, 1)
 

  
   

(0, 1)
 

  
 

           

                 

 (1,1)
 

    
(0,0)
 

 
   

( 1, 1)
 

   
 

Figure 8. Мicrostates which are derived from the electronic configuration p
2 
. 
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A more complex problem arises for wave 

functions of the second column, where there 

are two or three microstates within a cell. 

Let’s take a look on the content of the cell with 

L sM 1 M 0  . 

There are two microstates - 1,0
  
 
 

 and 1,0 .
  
 
 

 

They could be written as functions 

1 1 2

2 3 4

1,0 1,0 ,

1,0 1,0 ,

c c

c c





   

   

   
    

   

   
    

   

    

the coefficients 1 2 3, , ,c c c  and 4c  are 

associated with the conditions   
2 2 2 2

1 2 3 41 1c c c c        norming  

2 2 2 2

1 3 2 41 1c c c c        distribution, 

reflecting the circumstance that both functions 

are normed and that every microstate is 

distributed between both functions in a way 

such that it is completely depleted.  

The system of 4 equations shown above with 

four variables has a solution 
2 2

1 4c c  and  
2 2

2 3c c  ,   hence 1 4c c  и 

2 3c c , 

but it is impossible to find the numeric values 

– the four equations are not linearly 

independent. 
 

So, we will proceed as follows. 

By definition, the electron term comprises the 

microstates or microstate combinations having 

the same energy. It follows that one of the 1  

or 2 functions  with the respective values of 

coefficients must yield the same energy as 

1,0
  
 
 

 and 1,0
  
 
 

, which are within the same 

row in the first and third column. The other 

combination should have an energy different 

from the first one, corresponding to another 

electron term. It could be easily deduced that 

this is the energy of the microstates  1,1
  
 
 

 and 

1, 1
  
  
 

 from the first and last row of the 

same (middle) column. 
 

Let’s now take a look on Table 1 from another 

aspect. If we begin with the microstate with 

highest LM value – this is 1,1
  
 
 

, after 

addition of the two vectors, each with length 

2 and projection on the selected axis 1, we 

obtain a vector with length of 6  and 

projection on the same axis 2 (in 2h   units). 

In other words, the microstate 1,1
  
 
 

 has to be 

a function of this vector. Once obtained 

however, this vector is quantized in the space 

and apart the projection +2, it could be also 

oriented in a way such as to have projections 

equal to +1, 0, -1, -2. Also, the orientation of 

the spins of both electrons should be always 

opposite. It is important to understand that one 

of respective combinations in the column with  

Ms = 0 belongs to the vector derived from 

1,1
  
 
 

. Тhis vector is denoted with the letter D. 

The spin multiplicity is 2S+1=1, or there is one 

term 
1
D (singlet de), which includes 5 

microstates or combinations, all of which 

(without exceptions) are arranged vertically in 

the middle column of Table 1. 
 

As these combinations are unknown to us, we 

will randomly remove one microstate from 

each row of the second column as belonging to 

the term 
1
D. The result is illustrated in the new 

Table 2. 
 

With the new table, we proceed in the same way 

as with Table 1 – choosing the microstate with 

highest value for ML. Тhese are 1,0
  
 
 

, 1,0
  
 
 

, 

1,0
  
 
 

. From them, we retain the microstate 

with maximum value for MS, i.e. 1,0
  
 
 

. It 

corresponds to ML = 1 and MS = 1 or it is 

derived from vectors L  and S each with a 

length of 2 , whose projections could be 1, 0, -

1. These two vectors determine the existence of 

nine microstates with different energy, differing 

in projections on a random axis. These nine 

microstates constitute the electron term 
3
Р. If 

these microstates (or their combination in the 

middle column) are removed from Table 2, only 

one combination of microstates is left, which is 

not mentioned so far and whose energy in 

different from the energy of  
1
D and 

3
Р terms. It 

is   

1 23 0,0 1, 1 1,1
     

       
         

      
 

and due to the fact that it has ML = 0 and MS = 0, 

it forms the term 
1
S. 
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                                                    Table 2. Microstates of р
2
 after removing 

1
D. 

Ms 

ML 1 0 -1 

2    

1 1,0
  
 
 

 1,0
  
 
 

 1,0
  
 
 

 

0 1, 1
  
 

 
 0,0 , 1, 1

      
   

   
 1, 1

  
 

 
 

-1 0, 1
  
 

 
 0, 1

  
 

 
 0, 1

  
 

 
 

-2    

 

 

CONCLUSIONS 

Ultimately, the description of the 15 

microstates derived from the electronic 

configuration Р
2
 led to the following result. 

These microstates fell into three energy terms 

as follows: 

 5 microstates included in the electron 

term 
1
D; 

 9 microstates included in the electron 

term 
3
Р; 

 1 microstates included in the electron 

term 
1
S. 
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